Search results for "Pre-main sequence"

showing 10 items of 71 documents

Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

2015

We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surroun…

Settore FIS/05 - Astronomia E AstrofisicaN/AAccretio: accretion diskStars: pre-main sequenceX-rays: stars
researchProduct

The diagnostic potential of Fe lines applied to protostellar jets

2013

We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivi…

PhysicsJet (fluid)Range (particle radiation)ISM: individual objects: ESO-Hα 574 Par-Lup 3-4 ISM: jets and outflows ISM: lines and bands stars: pre-main sequenceFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesSpectral lineStarsindividual objects: ESO-Hα 574 Par-Lup 3-4 ISM: jets and outflows ISM: lines and bands stars: pre-main sequence [ISM]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceIonizationAstrophysics of Galaxies (astro-ph.GA)EmissivityElectron temperatureAtomic physicsExcitationSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

The brown dwarf population in the Chamaeleon I cloud

2003

We present the results of a multiband survey for brown dwarfs in the Chamaeleon I dark cloud with the Wide Field Imager (WFI) camera at the ESO/MPG 2.2-m telescope on La Silla (Chile). The survey has revealed a substantial population of brown dwarfs in this southern star forming region. Candidates were selected from R, I and H-alpha imaging observations. We also observed in two medium-band filters, M855 and M915, for the purpose of spectral type determination. The former filter covers a wavelength range containing spectral features characteristic of M-dwarfs, while the latter lies in a relatively featureless wavelength region for these late-type objects. A correlation was found between spec…

InfraredPopulationBrown dwarfFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsStellar classificationPhotometry (optics)Stars formationAstrophysics::Solar and Stellar AstrophysicseducationAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_studyBrown dwarfsStar formationAstrophysics (astro-ph)Luminosity functionAstronomy and AstrophysicsLow-massCircumstellar matterStars:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Pre-main sequenceLow-mass ; Brown dwarfs ; Stars ; Pre-main sequence ; Stars formation ; Luminosity function ; Mass function ; Circumstellar matterStarsSpace and Planetary ScienceMass functionChamaeleonAstrophysics::Earth and Planetary AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Supersaturation and activity-rotation relation in PMS stars: the young Cluster h Per

2016

The magnetic activity of late-type MS stars is characterized by different regimes, and their activity levels are well described by Ro, the ratio between P_rot and the convective turnover time. Very young PMS stars show, similarly to MS stars, intense magnetic activity. However they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Per, a ~13 Myr old cluster, that contains both fast and slow rotators, whose members have ended their accretion phase and have already developed a radiative core. It offers us…

Stars: activityRotation periodFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRossby numberSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsStars: coronaeX-rays: star010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsStars: rotationAstronomy and AstrophysicsAstronomy and AstrophysicEffective temperatureAccretion (astrophysics)Magnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsDynamo
researchProduct

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Laboratory evidence for asymmetric accretion structure upon slanted matter impact in young stars

2020

Aims. Investigating the process of matter accretion onto forming stars through scaled experiments in the laboratory is important in order to better understand star and planetary system formation and evolution. Such experiments can indeed complement observations by providing access to the processes with spatial and temporal resolution. A previous investigation revealed the existence of a two-component stream: a hot shell surrounding a cooler inner stream. The shell was formed by matter laterally ejected upon impact and refocused by the local magnetic field. That laboratory investigation was limited to normal incidence impacts. However, in young stellar objects, the complex structure of magne…

Shock wavestarsAccretionMagnetohydrodynamics (MHD)Young stellar objectFOS: Physical sciencesX-rays: starsAstrophysics01 natural sciencesShock wavesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsEjecta010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicspre-main sequence -X-raysAstronomy and AstrophysicsPlasmaPlanetary system[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]accretion disks -instabilities -magnetohydrodynamics (MHD) -shock waves -starsAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceInstabilitiesAccretion disksStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift

2015

High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and average…

Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAccretion accretion disks Stars: pre-main sequence Stars: variables: T Tauri Herbig Ae/Be Techniques: spectroscopic X-rays: starsAstrophysics::Galaxy Astrophysics
researchProduct

Correlation between the spatial distribution of the circumstellar disks and the massive stars in the open cluster NGC 6611. Compiled catalog and clus…

2006

Context: the observation of young stars with circumstellar disks suggests that the disks are dissipated, starting from the inner region, by the radiation of the central star and eventually by the formation of rocky planetesimals, over a time scale of several million years. It was also shown that strong UV radiation emitted by nearby massive stars can heat a circumstellar disk up to some thousand degrees, inducing the photoevaporation of the gas. This process strongly reduces the dissipation time scale. Aims: we study whether there exists a correlation between the spatial distribution of stars with circumstellar disks and the position of massive stars with spectral class earlier than B5, in …

PhysicsPlanetesimalInfrared excessPoint sourceAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Extinction (astronomy)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: formation planetary systems: protoplanetary disks stars: pre-main sequenceStellar classificationAstrophysicsPhotoevaporationStarsSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsOpen cluster
researchProduct

Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra

2015

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…

Accuracy and precisionPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequenceSurveysfundamental parameters [Stars]Astronomical spectroscopysurveysAngular diameterpre-main sequence [Stars]Astrophysics::Solar and Stellar AstrophysicsSurveydata analysis [Methods]educationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicseducation.field_of_studygeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astronomy and AstrophysicsStars: fundamental parameterAstronomy and AstrophysicEffective temperatureopen clusters and associations: generalSurface gravitymethods: data analysisAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsMethods: data analysis; Open clusters and associations: general; Stars: fundamental parameters; Stars: pre-main sequence; Surveys; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary Science[SDU]Sciences of the Universe [physics]open clusters and associations: general; surveys ; methods: data analysisAstrophysics::Earth and Planetary Astrophysicsstars: fundamental parametersMethods: data analysi
researchProduct

CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and acc…

2017

Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are an…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesstars: pre-main sequenceAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicscircumstellar matter01 natural sciencesSettore FIS/05 - Astronomia E Astrofisicastars: rotation0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpectral analysis010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhotosphere010308 nuclear & particles physicsX-rayAstronomy and AstrophysicsSpectral componentAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExtinction (optical mineralogy)stars: variables: T Tauri Herbig Ae/BeAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMain sequence
researchProduct